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Foot-and-mouth disease (FMD) is highly infectious, but despite

the large quantities of FMD virus released into the environment

and the extreme susceptibility of host species to infection,

transmission is not always predictable. Whereas virus spread in

endemic settings is characterised by frequent direct and

indirect animal contacts, incursions into FMD-free countries

may be seeded by low-probability events such as fomite or

wind-borne aerosol routes. There remains a void between data

generated from small-scale experimental studies and our

ability to reliably reconstruct transmission routes at different

scales between farms, countries and regions. This review

outlines recent transmission studies in susceptible host

species, and considers new approaches that integrate virus

genomics and epidemiological data to recreate and

understand the spread of FMD.
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Characteristics of foot-and-mouth disease
Foot-and mouth disease (FMD) affects cloven-hoofed

animals (including cattle, sheep, goats and pigs), and is

caused by an RNA virus (FMDV) in the family Picorna-

viridae. Characteristically, vesicles develop, especially in

epithelia around the mouth, feet and mammary glands.

Case-fatality is usually low except in young stock, but

productivity losses and costs associated with control can

be substantial [1]. The disease is highly contagious, and

the potential for infection of different domesticated and

wildlife hosts, not all of which show obvious signs of

disease, is a further challenge to control [2]. FMDV exists

as seven discrete serotypes, and the disease mainly occurs

in Africa and Asia, with global distribution mirroring

poverty and livestock density [3�]. New virus strains
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evolve and emerge regularly and give rise to successive

waves of infection, which sometimes spill over into FMD-

free regions. Vaccination with killed vaccines is used on a

large scale but the immunity induced is short lived and is

serotype and sometimes strain specific [4�].

During acute infection, transmission is facilitated by virus

shedding from ruptured vesicles and in bodily excretions

and secretions, including breath, milk and semen [5]

(Figure 1). Susceptible ruminants can be infected by very

low doses of inhaled virus through direct contact with the

breath of other acutely infected animals, or indirectly by

resuspension of aerosols from contaminated materials.

Pigs are relatively resistant to FMDV infection via inha-

lation routes [5]. Other routes of infection such as inges-

tion or through abrasions require a higher dose of virus.

Depending on conditions, FMDV can survive for days to

months in the environment and in various animal pro-

ducts including meat [6]. There is a rapid immune

response to infection associated with FMDV clearance,

but some ruminant hosts continue to harbour virus,

becoming carriers with low and declining levels of FMDV

in specific nasopharyngeal epithelial sites [7] and associ-

ated lymphoid tissues [8].

In the absence of obvious epidemiological links between

infected animals, FMDV incursions into FMD-free coun-

tries must often be explained by low-probability events.

This gives rise to the reputation of FMD as one of the

most infectious diseases. A classic example was the long

distance wind-borne spread of FMD to the Isle of Wight

in the South of England in 1981 from a pig farm on the

North French coast [9]. This contrasts with disease cir-

culation within epidemics, or in and between countries

where FMD is endemic, where spread occurs most read-

ily via more predictable routes due to direct contact

between animals and via traded animal products.

A challenge is to understand, quantify and model the

multiplicity of different transmission routes possible for

FMD at different scales in order to predict the disease’s

spread and the likely impact of control measures.

Experimental studies of transmission
Experimental studies under controlled conditions have

contributed enormously to our understanding of the

pathogenesis and transmission dynamics of FMD

(Figure 2), including sites of virus replication and persis-

tence, incubation and shedding periods, minimum infec-

tious doses by various routes, the nature and impact of the
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Figure 1

What FMDV
is shed in

What gets
contaminated

Transmission
Route

Breath

Secretions
and
excretions

Animal
products

Air

People, vehicles,
equipment,
feed, roads, etc

Milk, meat, rest
of carcase

Direct contact with
aerosols via respiratory
tract

Direct contact and indirect
contact with secondary
aerosols (resuspension) or via
abrasions/ingestion

Indirect contact via ingestion
or secondary aerosols

Current Opinion in Virology

Principal routes by which infectious FMD virus can be spread between susceptible animals (reviewed in [5]).

Figure 2
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A simple S (susceptible), E (exposed) I (infected) and R (recovered) model describing cycles of FMDV replication and transmission in livestock.

Susceptible animals can be infected via direct contact with infectious animals, through ingestion of infected animal products, via exposure to

inanimate objects contaminated with FMDV (fomites), or through ingestion/aerosol contact with infected animal products. The period of

infectiousness broadly correlates with the expression of clinical signs, although precise timing of these events has been observed to vary in

experimental studies with different host species, infection models and FMDV serotypes.
immune response and differences between host species

[5,10,11,12�]. It is important to recognise that these

studies predominately focus on experimental infection

in cattle, and consequently, transmission studies for other

domesticated hosts (pigs, small ruminants and Asian

buffalo) are under-represented in the literature. Further-

more, controlled studies with dangerous pathogens in

animals are constrained by ethical, biosecurity, capacity

and cost considerations. Small-scale studies lack the
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power to quantify low probability transmission routes,

such as from fomites, contaminated feed or carriers. Thus,

it is often difficult to quantify the force of infection arising

from different transmission opportunities that may occur

in the field and hence to recognise those of most impor-

tance under different circumstances.

A common difficulty for experimental studies is reconciling

the need to design challenge models that reflect real-life
www.sciencedirect.com
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situations whilst remaining reproducible, comparable and

quantifiable. In order to better mimic natural exposure,

recent studies have pioneered the use of novel intranaso-

pharyngeal (INP) inoculation systems in cattle [13], pigs

[14], and sheep [15]. In cattle, these routes of infection were

compared to direct contact exposure (cattle-to-cattle or pig-

to-cattle) and to the conventionally used system of intrae-

pithelial-lingual injection. There was more within-group

variation in the timing of clinical infection following natural

and simulated natural virus exposure systems when com-

pared with needle inoculation. However, as well as more

closely simulating field conditions, these alternative meth-

ods engage mucosal host defence mechanisms.

Most transmission experiments involve inoculating animals

with FMDV and allowing them to mix with uninfected

animals in a controlled environment. Novel experimental

designs have been recently implemented in which the

uninfected animals mix with the infected animals for

defined periods of time, thus allowing FMDV infectious-

ness to be studied in more detail [16,17]. Recently, Sten-

feldt and others studied direct contact transmission of

FMDV within groups of pigs co-mingled in successive

periods from 8 to 64 hours after inoculation of the donor

pigs [17]. Infectiousness started 24 hours after inoculation

but approximately 24 hours before the first clinical signs of

FMD had appeared, coinciding with the start of viraemia in

the donors. Furthermore, the onset and progression of

clinical FMD in recipient pigs was faster after exposure

to donors at more advanced phases of disease, suggesting

this had resulted in a higher challenge dose. The shedding

of FMDV in oropharyngeal fluids was a more reliable

indicator of FMDV infectiousness than clinical signs.

Importantly, these findings for groups of pigs differ from

one-to-one transmission studies in cattle where animals

were not infectious until, on average 0.5 days after clinical

signs appeared [16], suggesting preclinical transmission is

more likely from pigs than cattle. These examples highlight

the challenges to establish generic insights that inform risk-

based control policies using data from different host species,

study designs, FMDV serotypes and infection methods.

Indirect transmission routes are notoriously difficult to

quantify but are the main means for the spread of FMDV

in countries that effectively impose movement bans in

the face of disease outbreaks. An attempt to estimate

indirect contact transmission rates in experimental calves

has been recently reported [18]. This study estimated the

reproduction ratio for transmission via the environment to

be 2, which is at the level that would be able to sustain an

epidemic. However, this estimate is substantially lower

than the reproduction ratio reported for direct transmis-

sion, which is typically around 20–30 [19–21].

Studying transmission in the field
In view of the limitations of experimental studies, field

studies are essential, but have been hampered by a lack of
www.sciencedirect.com 
capacity in parts of the world where FMD occurs, along

with conflict between the requirements for expeditious

disease control versus information gathering. Compre-

hensive information on both livestock epidemiology

and disease progression is rarely available, but is needed

to understand the relationship between animal produc-

tion systems and the dynamics of FMD within them [22].

FMD control strategies are not always set up in a way that

promotes their evaluation and few field trials of vaccina-

tion are undertaken [23]. Accurate modelling of field

FMD transmission is further complicated by the contri-

bution of sub-clinical infection amongst acutely infected

animals, particularly between vaccinated animals where

clinical disease is less evident [24–26].

A lack of detailed data also hampers the development of

models to predict FMDV transmission and control, a topic

reviewed by Pomeroy and others [27��]. They found that

modelling methodology is well developed with multiple

methods to represent contact-specific transmission and

targeted control. However, detailed disease and host data

representing large FMD outbreaks used to populate

these models are restricted mainly to the UK epidemic

of 2001. In fact, many insights have been gained from

studying this epidemic, such as of the relatively greater

contribution of cattle rather than sheep in disease trans-

mission both between and within farms. But it is difficult

to know how far these findings can be generalised to

situations elsewhere, with different animals, husbandry

systems, livestock and human networks, climates and

levels of pre-existing immunity. Novel data sources are

needed and notwithstanding the challenges involved,

host and disease data should be collected from endemic

settings to advance control and better understand FMDV

transmission dynamics. As an example of the potential

benefit of these approaches, a recent model of transmis-

sion from African buffalo to cattle adjacent to the Kruger

National Park in South Africa [28��] reproduced the

observed frequency of outbreaks, highlighting the impor-

tance of young buffalo and suggesting that cattle moving

into the park may be more important than buffalo

escaping.

The role of carriers in transmission
The mechanisms involved in virus persistence within

carrier ruminants and the very low risks for onward trans-

mission are incompletely understood, hindering the devel-

opment of risk-based approaches to inform disease control

and international rules for safe trade in animals and their

products [29]. Experimental and field studies to under-

stand the epidemiological role of carrier animals continue

to be a focus of research. Hayer and others monitored

duration of the carrier state in Indian cattle and found

the mean period of virus persistence was 13 months

[30]. Cellular determinants of the carrier state have also

been studied using host transcriptome analysis of tissue

samples processed by laser capture microdissection from
Current Opinion in Virology 2018, 28:85–91
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experimentally infected cattle [7], indicating suppression

of antiviral host factors in association with persistent

FMDV. At the level of the host, Bronsvoort and others

studied carriers within cattle herds in Cameroon, where

FMD is endemic [31]. They confirmed that carrier rates

decrease markedly with time after infection, and found

that younger animals are more likely to be carriers. How-

ever, there was no evidence to support virus transmission

from these carriers (via seroconversion of animals born

after outbreaks).

African buffalo (Syncerus caffer), in which FMDV may

have originated, can act as a reservoir host, maintaining

the three Southern African serotypes (SAT 1-3) of

FMDV, even within relatively small and isolated buffalo

populations [32]. This probably involves transmission

from carrier adults to susceptible young buffalo and

carrier African buffalo have also been shown to transmit

the virus to cattle. In contrast, transmission from carrier

domestic livestock has not been proven by experimental

studies [33]. Occasional spread of SAT serotypes to cattle

can give rise to self-sustaining epidemics which are diffi-

cult to control with vaccination due to the antigenic

diversity of the buffalo virus pools. Buffalo to cattle

transmission is therefore another example of something

that occurs rarely, but can be of great significance [21].

Coinfection studies in African buffalo identified infec-

tious virus and viral genomes for up to 185 and 400 days

respectively in lymphoid tissues of the head and neck,

mainly in germinal centres [34]. There was a correlation

between persistence and in vitro cell-killing capacity of

different virus isolates, suggesting that the duration of

persistence of FMDVs may be linked to their replication

and cell-killing capacity.

Transmission between regions
Spread of FMDV at higher scales (i.e. between farms,

countries or regions) is a complex process affected by

factors beyond virus shedding and uptake. For example,

long distance airborne transmission of FMDV is depen-

dent on specific virus transfer and survival conditions

which can now be predicted by models that consider

wind direction and strength, temperature, relative humid-

ity and geographical topography [35]. Consequently, this

mode of transmission is understood to be uncommon

even in temperate zones and extremely unlikely in hot

and arid conditions.

Factors associated with globalisation increasing the risk of

long-distance spread of FMDV are well recognised, such

as the movements of people, goods, animals and their

products. Unrestricted and illegal movements are espe-

cially risky, whilst civil unrest disrupts disease and border

controls and alters animal, people and trade flows [36,37].

There is a long history of using virus genetic data to study

the international spread of FMDV [38–40], which con-

tinues with collaboration between reference laboratories
Current Opinion in Virology 2018, 28:85–91 
supported by the Food and Agriculture Organisation of

the United Nations and the World Animal Health Orga-

nisation (OIE) [41]. Recent studies show repeated and

widespread dissemination of FMDV serotypes O and A

from South Asia (Figure 3), which is perhaps counter-

intuitive given the FMD control efforts and progress

reported from India, the largest country in the region

and the world’s biggest cattle producer.

Using phylodynamics to understand
transmission
FMDV replicates and evolves rapidly allowing transmis-

sion and selection to be studied at different scales;

between cells and tissues (i.e. within individual animals),

between animals, between farms and between countries

[42]. In their review, Pybus and Rambault discuss the

emerging science of phylodynamics, which links patho-

gen evolution with the dynamics of infection and trans-

mission [43�].

A primary aim of FMD researchers has been to use

genetic data to resolve the order and timing of transmis-

sion events between outbreaks, since surveillance and

epidemiological enquiries often miss infected farms and

cannot resolve transmission pathways. Because of the

many possible routes for virus spread, it is difficult to

determine which has been responsible for new outbreaks.

For example, the precise source and route of infection

(who infected whom and how) for most of the >2000

premises infected during the 2001 UK epidemic could not

be determined with certainty from epidemiological

enquiries. Analysis of the overlapping periods within

which individuals or groups are infected and/or infectious

can help to decide the most likely direction of transmis-

sion, although this depends upon accurate observations

on farms, combined with accurate estimates of incubation

and shedding patterns. Many transmission permutations

usually remain and constraining this selection with

FMDV genetic data has been used to infer the most

likely transmission routes between farms affected by

FMD in the UK in 2001 and 2007 [44�,45]. Direct source

attribution by sequencing can only inform the likelihood

of direct linkage to the last ‘replicating’ source (an ani-

mal), a problem apparent in analysis of the earlier UK

epidemic of 1967/8 [46].

The UK 2001 and 2007 datasets have been reanalysed

with increasingly sophisticated methods [47–52]. These

approaches attempt to overcome difficulties such as unob-

served outbreaks on farms, incorrect attribution of infec-

tion and shedding times, unobserved evolution within

unsampled hosts and lack of farm network and contact

data. Although these methods provide information on

who infected whom, including quantifying the uncer-

tainty in attribution of transmission links, they cannot

on their own tell us about the routes of transmission or

their relative importance. However, these methods could
www.sciencedirect.com
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Recent long-distance spread of FMD viruses revealed by sequence analyses. Since 2008, a number of region-specific FMDV lineages that

normally circulate and are maintained within endemic pools have spread into new geographical settings (coloured arrows represent viruses from

sub-Saharan Africa (red), the Indian sub-continent (brown), and Southeast/East Asia (blue)). The southward pointing brown arrow denotes FMDV

spread to cause an outbreak that occurred on Islands in the Indian Ocean during 2016 (Mauritius and Rodrigues). No single factor has been

recognised that underpins these transboundary transmission patterns, which are probably exacerbated by the escalation of regional political

crises, and migration of people in North Africa and the Middle East along with increased demand for animal products in East Asia.
play an immensely important role in understanding the

epidemiology of FMDV in endemic settings, and partic-

ularly in the role of wildlife, and the management of

livestock and wildlife interface, but this will require

significant improvements in surveillance and sample

acquisition.

More realistic models of within-host pathogen evolution

would allow greater information about ‘who-infected-

whom’ to be extracted from a phylogeny. Whole genome

consensus sequencing of FMDVs obtained during serial

passage in cattle confirmed the ability of phylogeny to

reproduce the transmission events between animals [53].

These experimental studies were complemented by

investigations of the variability of FMDV full genome

consensus sequences from samples collected from ani-

mals representing multiple hosts on each of the holdings

affected during the 2007 UK outbreak [54]. An average

4.6 nucleotide sequence differences accrued during trans-

mission between infected farms, similar to the one to four

nucleotide changes that were detected during controlled

inter-animal transmissions. The small number of substi-

tutions between farms suggests limited cycles of within-

farm transmission prior to disease detection and sampling.

The advent of next generation sequencing (NGS) pro-

vides greater resolution to monitor the entire sequence

swarm that exists within FMDV samples and the impact

of transmission within and between hosts upon sub-
www.sciencedirect.com 
consensus polymorphisms [42,55,56�,57]. NGS analysis

of viruses obtained from the cattle transmission series

described by Juleff and others [53] revealed that the

dynamics of minority variants are consistent with genetic

drift rather than strong selection and that viral population

complexity is influenced by small intra-host bottlenecks

and relatively large inter-host bottlenecks [56�].

Conclusion
A spectrum of different mechanisms contributes to the

transmission of FMDV at different scales. Uncertainty

regarding the precise origins of FMD outbreaks and the

specific connections between susceptible hosts, infected

farms and different countries can be reduced by combin-

ing FMD virus sequence data with epidemiological data

describing the spatial and temporal features of the out-

breaks. Reconstructing patterns of FMD virus spread has

the potential to help define and understand the risks for

onward FMD transmission providing new focus for dis-

ease control initiatives such as targeted vaccination.
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